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A Survey of
Multicore Processors

A review of their common attributes

eneral-purpose multicore processors are
being accepted in all segments of the
industry, including signal processing

and embedded space, as the need for Q

more performance and general-pur-
pose programmability has grown. Parallel process-
ing increases performance by adding more parallel
resources while maintaining manageable power
characteristics. The implementations of multicore
processors are numerous and diverse. Designs
range from conventional multiprocessor machines
to designs that consist of a “sea” of programmable
arithmetic logic units (ALUs). In this article, we
cover some of the attributes common to all multi-
core processor implementations and illustrate these
attributes with current and future commercial multi-
core designs. The characteristics we focus on are applica-
tion domain, power/performance, processing elements,
memory system, and accelerators/integrated peripherals.

INTRODUCTION

Parallel processors have had a long history going back at least
to the Solomon computer of the mid-1960s. The difficulty of
programming them meant they have been primarily employed
by scientists and engineers who understood the application
domain and had the resources and skill to program them.
Along the way, a surprising number of companies created par-
allel machines. They were largely unsuccessful since their dif-
ficulty of use limited their customer base, although, there were
exceptions: the Cray vector machines are perhaps the best
example. However, these Cray machines also had a very fast
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scalar processor that could be easily programmed in a conven-
tional manner, and the vector programming paradigm was not
as daunting as creating general parallel programs. Recently
the evolution of parallel machines has changed dramatically.
For the first time, major chip manufacturers—companies
whose primary business is fabricating and selling microproces-
sors—have turned to offering parallel machines, or single chip
multicore microprocessors as they have been styled.

There are a number of reasons behind this, but the leading one
is to continue the raw performance growth that customers have
come to expect from Moore’s law scaling without being over-
whelmed by the growth in power consumption. As single core
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designs were pushed to ever
higher clock speeds, the power
required grew at a faster rate
than the frequency. This power
problem was exacerbated by
designs that attempted to
dynamically extract extra performance from the instruction
stream, as we will note later. This led to designs that were complex,
unmanageable, and power hungry. The trend was unsustainable.
But ever higher performance is still desired as evident by predic-
tions from the ITRS Roadmap [1] predicting a need for 300x more
performance by 2022 as shown in Figure 1. To meet these
demands, chip designers have turned to multicore processors and
parallel programming to continue the push for more performance,
and in turn the ITRS Roadmap has projected that by 2022, there
will be chips with upwards of 100x more cores than on current
multicore processors. The main advantage to multicore systems is
that raw performance increase can come from increasing the num-
ber of cores rather than frequency, which translates into a slower
growth in power consumption. However, this approach represents
a significant gamble because parallel programming science has not
advanced nearly as fast as our ability to build parallel hardware.
General-purpose multicores are becoming necessary even
in the realm of digital signal processing (DSP) where, in the
past, one general-purpose control core marshaled many spe-
cial purpose application-specific integrated circuits (ASICs) as
part of a “system on chip.” This is primarily due to the variety
of applications and performance required from these chips.
This has driven the need for more general-purpose processors.
Recent examples would include software-defined radio (SDR)
base stations, or cell phone processors that are required to
support numerous codecs and applications all with different
characteristics, requiring a general programmable multicore.

ARCHITECTURE CLASSIFICATIONS

Multicore architectures can be classified in a number of ways.
In this section we discuss five of the most distinguishing
attributes: the application class, power/ performance, pro-
cessing elements, memory system, and accelerators/ integrat-
ed peripherals.

APPLICATION CLASS
If a machine is targeted to a specific application domain, the
architecture can be made to reflect this. The result is a design
that is efficient for the domain in question but often ill-suited to
other areas. The extreme example is an ASIC. Tuning to an
application domain can have several positive consequences.
Perhaps the most valuable is the potential for significant power
savings. Conventional DSPs are a good example.

There are two broad classes of processing into which an appli-
cation can fall: data processing dominated and control dominated.

DATA PROCESSING DOMINATED
Data processing-dominated applications contain many familiar
types of applications including graphics rasterization, image

processing, audio processing,

and wireless baseband process-

ing. Many of the classic signal

processing algorithms are part

of this group. The computation

of these types of applications is
typically a sequence of operations on a stream of data with little
or no data reuse. The operations can frequently be performed
in parallel and often require high throughput and performance
to handle the large amounts of data. These kind of applications
favor designs that have as many processing elements as practi-
cal in regards to desired power/performance ratio.

CONTROL PROCESSING DOMINATED

Control-dominated applications include file compression/
decompression, network processing, and transactional query
processing. The code for these types of applications tend to be
dominated by conditional branches, complicating parallelism.
The programs themselves often need to keep track of large
amounts of state and often have a high amount of data reuse.
These types of applications favor a more modest number of
general-purpose processing elements to handle the unstruc-
tured nature of control dominated code.

In almost all cases, no application can fit into these neat
divisions, but execution phases of an application may. For
instance the H.264/AVC [4] video codec is data dominant when
performing the block filter, but control dominated when com-
pressing or decompressing video using context-adaptive binary
arithmetic coding (CABAC) compression. It is valuable to
think of applications as falling into these divisions to under-
stand how different multicores design aspects can affect per-
formance. An unbalanced architecture may do very well on the
data dominated portion of the H.264/AVC, but be very ineffi-
cient for CABAC encoding/decoding, leading to less than
desired performance.

POWER/PERFORMANCE
Many applications and devices have strict performance and
power requirements. For instance, a mobile phone that wants to
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[FIG1] ITRS Roadmap [1] for frequency, number of data
processing elements (DPE) and overall performance.
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support video playback has a
strict power budget, but it also
has to meet certain perfor-
mance characteristics.

Performance has been the
traditional goal. In the past
decade, power has joined per-
formance as a first-class design constraint. This is, in large
part, due to the rise of mobile phones and other forms of
mobile computing where battery life and size are critical. More
recently, power consumption has also become a concern for
computers that are not mobile. The driving force behind this
is the growth in data centers to support “cloud” computing.
The typical general-purpose multicore processor is ideally
suited to these centers, but these centers are now consuming
more energy than heavy manufacturing in the United States.
They are so large—Google now refers to them as warehouse-
scale computers—that the power consumption of the basic
multicore component is critical to the cost and operation.

PROCESSING ELEMENTS

In this section, we cover the architecture and microarchitec-
ture of a processing element. The architecture, or more fully
the instruction set architecture (ISA), defines the hardware-
software interface. The microarchitecture is the implementa-
tion of the ISA.

ARCHITECTURE

In conventional multicore processors, the ISA of each core is
typically a legacy ISA from the corresponding uniprocessor
with minor modifications to support parallelism such as the
addition of atomic instructions for synchronization. The
advantages to legacy ISAs is the existence of implementations
and the availability of programming tools. An ISA may also be
custom defined.

ISAs can be classified as reduced instruction set computer
(RISC) or complex instruction set computer (CISC). Although
this was a controversial distinction years ago, in today’s
designs, the microarchitectural distinctions have been blurred:
most CISC machines look very much like their RISC counter-
parts once decoding has been done. On the code front, the dif-
ferences are still distinct. CISC has the edge in code size due
to the greater selection of instructions and richer semantics
available. RISC, on the other hand, has larger code sizes due to
the need to emulate more complex instructions with the
smaller set of RISC instructions. The advantage of RISC is it
provides an easier target for compilers and allows for easier
microarchitectural design.

Beyond the base definition of the ISA, vendors have been con-
tinually adding ISA extensions to improve performance for com-
mon operations. Intel has added MMX, MMX2, and SSE1-4 [5] to
improve multimedia performance. ARM has added similar
instructions for multimedia with its NEON [6] instruction set.
These instructions allow for a better performance/power con-
sumption ratio as specialized hardware can do operations like a

vector transpose in one instruc-
tion. The soft-core provider
Tensilica has made this the
main selling point for their
Xtensa CPUs [7], offering cus-
tomizable special purpose
instructions for specific designs.

MICROARCHITECTURE

The processing element microarchitecture governs, in many
respects, the performance and power consumption that can
be expected from the multicore. The microarchitecture of
each processing element is often tailored to the application
domain that is targeted by the multicore machine. Although
the commercial offerings of the major chip manufacturers
like Intel employ numbers of identical cores into a homoge-
neous architecture, it is often advantageous to combine dif-
ferent types of processing elements into a heterogeneous
architecture. The idea is again to obtain a power advantage
without loss of performance. A typical organization has a con-
trol processor marshaling the activities of an ensemble of
simpler “data plane” cores. In data-dominated applications,
such architectures can often provide high performance at low
power. The drawback is that the programming model for het-
erogeneous architectures is much more complicated.

The simplest type of processing element is the in-order
processing element. This type of processing element decodes
and executes instructions in program order and dynamically
accounts for data forwarding and control hazards. There are
two main performance parameters that can be modified to get
the desired performance. First, multiple pipelines can be
added to fetch and issue more than one instruction in parallel,
creating a superscalar processing element to increase perfor-
mance. However, increasing issue width requires extra logic
to provide more complex data forwarding paths and hazard
detection to assure correct code execution in the pipelines.
The complexity of the logic grows greater than quadratically
with the number of pipelines, and a point of diminishing
returns is quickly reached. Experiments with general-purpose
applications suggest that point is about three to four pipe-
lines, but of course this is highly dependent on the applica-
tions. Second, performance can also be improved by
increasing the number of pipeline stages, thus reducing the
logic per stage. This enables a faster clock at the expense of
greater penalty if the instruction sequence is broken by
branches. In-order elements have small die area, low power,
and are easily combined in large numbers if an application
has abundant thread level parallelism (TLP) and few perfor-
mance sensitive serial sections. For example, NVIDIA’'s G200
[8] gangs together 240 in-order cores because graphics pro-
cessing is highly parallel with few serial sections.

Taking the superscalar core further to gain as much single
thread performance as possible is the out-of-order architec-
ture. It attempts to dynamically find and schedule multiple
instructions “out of order” to keep the pipelines full. The
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dynamic scheduling requires

very complex and power hun-

gry circuitry to keep track of

all in-flight instructions. Out-

of-order designed cores are

most suitable for applications

that have a wide range of behaviors and high performance is
needed. However, logic complexity means that this type of
processing element is not power efficient and requires sub-
stantial die area. Most out-of-order processors are multi-issue,
as single-issue out-of-order processors do not have much
advantage over a simpler in-order core. Because the out-of-or-
der core is large and power hungry, very few can be combined
in practice. However, they are preferable if the applications to
be run are control dominated and have large critical serial
portions and moderate TLP. For example, the ARM Cortex A9
[6] is targeted for netbook computers, and requires single
thread performance over TLP, so it utilizes a handful of out-
of-order cores.

To increase performance over superscalar architectures,
but eliminate the complexity of the extra logic needed to prop-
erly execute the instruction stream, single-instruction, multi-
ple-data (SIMD) or very long instruction word (VLIW)
architectures can be used. The SIMD architecture makes use
of very wide registers split into lanes to process multiple data
points with one instruction. A simple example is the addition
of two vectors element-wise. Each pair of elements is pro-
cessed in its own lane. This style of architecture is well suited
for data intensive applications that are data parallel. An exam-
ple is the IBM Cell [9] that uses many SIMD cores targeted
towards data dominated applications. A SIMD architecture is
highly inefficient for general-purpose processing.

To avoid being limited to one instruction processing multiple
data points, a VLIW can be used. VLIW uses multiple pipelines but
does not typically have the forwarding, scheduling, and hazard
detection logic of a superscalar core. Instead, the compiler is relied
upon to group instructions into packets that can be executed in
parallel and guarantee no data or control hazards—the complexity

has been moved to the compiler.
VLIW execution allows for very
wide machines that can process
multiple data points with multi-
ple instructions at the same
time, giving it a distinct advan-
tage over SIMD. But VLIW can suffer severe under utilization
problems if the compiler cannot find sufficient parallelism. VLIW
and SIMD are both high-performance and power-efficient designs
but are usually well suited for only very specific types of applica-
tion codes with large numbers of independent operations that can
found by compilers or the programmer. Architectural and micro-
architectural design parameters are summarized in Table 1.

MEMORY SYSTEM

In uniprocessor designs, the memory system was a rather sim-
ple component, consisting of a few levels of cache to feed the
single processor with data and instructions. With multicores,
the caches are just one part of the memory system, the other
components include the consistency model, cache coherence
support, and the intrachip interconnect. These determine how
cores communicate impacting programmability, parallel appli-
cation performance, and the number of cores that the system
can adequately support.

CONSISTENCY MODEL

A consistency model defines how the memory operations may
be reordered when code is executing. The consistency model
determines how much effort is required by the programmer to
write proper code. Weaker models require the programmer to
explicitly define how code needs to be scheduled in the proces-
sor core and have complex synchronization protocols. Stronger
models require less effort and have simpler synchronization
protocols. On the other hand, the consistency models have an
effect on performance. Strong consistency models place strict
ordering constraints on how the memory system is allowed to
propagate reads and writes to other processing elements. For
example, sequential consistency requires all processors in a

[TABLE 1] SUMMARY OF PROS AND CONS OF VARIOUS CORE DESIGN PARAMETERS.

ISA PRO

LEGACY COMPILER AND SOFTWARE SUPPORT

CUSTOM CAN BE HIGHLY OPTIMIZED FOR TARGET APPS

RISC EASIER MICROARCH DESIGN, EASIER COMPILER DESIGN
CIsc MORE INSTS THAT MAY ALLOW FOR BETTER OPTIMIZATION,

SMALLER CODE SIZE

ALLOWS HIGHLY OPTIMIZED CODE FOR TARGETED
FUNCTIONS

MICROARCH PRO

IN-ORDER

SPECIAL INSTS

MANY CAN BE PLACED ON DIE
OUT-OF-ORDER
SCHEDULING OF INSTS

LOW TO MEDIUM COMPLEXITY, LOW POWER, LOW AREA SO

VERY FAST SINGLE THREAD PERFORMANCE FROM DYNAMIC

CON

MAY BE INEFFICIENT FOR TARGETED APPS REQUIRING HIGH
PERFORMANCE

COMPILER AND SOFTWARE SUPPORT CAN BE NONEXISTENT

CODE SIZE CAN BE LARGE, INEFFICIENT FOR CERTAIN APPS
COMPLEX MICROARCH DESIGN TO SUPPORT ALL INSTS, COMPILER
DESIGN COMPLICATED

COMPLEX TO DESIGN, MAY REQUIRE HAND CODING DUE TO
LIMITED/NO COMPILER SUPPORT

CON
LOW TO MEDIUM SINGLE THREAD PERFORMANCE IN GENERAL

HIGH DESIGN COMPLEXITY, LARGE AREA, HIGH POWER

SIMD VERY EFFICIENT FOR HIGHLY DATA-PARALLEL/VECTOR CODE CAN BE UNDER-UTILIZED IF CODE CAN NOT BE VECTORIZED, NOT
APPLICABLE TO CONTROL-DOMINATED APPLICATIONS
VLW CAN ISSUE MANY MORE INSTRUCTIONS THAN OUT-OF-ORDER REQUIRES ADVANCED COMPILER SUPPORT, MAY HAVE WORSE PER-

DUE TO REDUCED COMPLEXITY

FORMANCE THAN NARROWER OUT-OF-ORDER CORE IF COMPILER
CAN NOT STATICALLY FIND ILP
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system to see that all reads and writes occur in the same order
globally and in program order. This can severely impact perfor-
mance but makes programming simple as it is easy to reason
about how parallel code will operate. Conversely, weak consis-
tency allows reads and writes in the system to be seen in any
order by all processors. Because weak consistency models allow
this memory reordering, primitives known as barriers and fenc-
es are added to the instruction set. These primitives allow pro-
grammers to enforce stricter consistency on memory accesses
when needed, such as an access to a synchronization variable.

Two consistency models are illustrated in Figure 2. In
Figure 2, each of the processors P1-P4 are issuing write (e.g.,
X =1) and read (e.g., R(Z) = 0) requests. The memory model of
a sequential system states that all reads and writes to all address-
es are observed to be in the same order. This means that when
P2 reads Z, the value returned should be two, as a result of the
earlier write by P4. This is accomplished by the processing ele-
ments and the memory system establishing a global ordering of
all requests, typically enforced by the arbitration on an intercon-
nection network. In the weak consistency case, P2 reads Z and
the result returned is zero. In this case the consistency model
allows different cores to see a different global ordering of events.

Weak consistency models make the memory system easier to
design but place an onus on the programmer to correctly iden-
tify and place instructions in the program that enforce proper
behavior. On the other hand, sequential consistency makes pro-
gramming easier but makes the memory system more compli-
cated and slower as it is unable to take advantage of performance
gains that can be had by allowing memory operations to com-
plete out-of-order.

CACHE CONFIGURATION
Caches have increased importance in multicore processors.
They give processing elements a fast, high bandwidth local
memory to work with. This is of particular importance as an
increasing number of cores are trying to access the relatively
slow, low-bandwidth, off-chip memory.

Caches can be tagged and managed automatically by hard-
ware or be explicitly managed local store memory. Automatically
tagged caches are the most common form as they are transpar-

P2 P3 P4

lrRx) =1 [R(Y

Sequential Consistency Weak Consistency

[FIG2] Hlustration of consistency models.

ent to the instruction stream which believes it has access to one
uniform memory. The main drawbacks to automatically man-
aged caches is they have nondeterministic performance and use
die area for storing tags for each entry. Local stores conversely
can provide deterministic performance because they are
managed explicitly by the executing software stream and offer
more storage for the same area because they do not need tags.
This software management can be cumbersome and in most
cases is only preferred by applications that require hard real-
time performance requirements.

The amount of cache required is very application depen-
dent. Bigger caches are better for performance but show
diminishing returns as caches sizes grow. Large caches may
also not be of use to applications where data is only used once,
such as video decoding. In these situations, it may be desirable
to have cache modes that distinguish between streaming
accesses and normal accesses. The Microsoft Xenon [10] has
this functionality to prevent cache pollution with data that
will not be reused. Cache sizes are usually made as big as the
die area and power budget will allow. This is a trend seen in
control processing dominated architectures with heavy data
reuse like the Intel Core i7 [2].

The number of cache levels has been increasing as processing
elements both get faster and become more numerous. The driv-
ing consideration is how far away the main memory is, in cycles,
from each processing element. The greater the number of cycles
away, the greater the need for more cache levels. The first level of
cache is usually rather small, fast, and private to each processing
element. Subsequent levels can be larger, slower, and shared
among processing elements. These levels are used to present the
illusion that a processing element has access to a very fast mem-
ory when, in fact the main memory may be hundreds of cycles
away. This is the case for server class multicores like the AMD
Phenom [11] that have upwards of three levels of cache. For
embedded multicores the main memory may be a few tens of
cycles away and one level of cache may be sufficient conserving
both die area and power. But even embedded cores are seeing fre-
quency increases, the Texas Instruments (TI) OMAP4430 [12] will
be clocked at 1 GHz, so caches will continue to gain importance
to hide the widening gap in memory latency and bandwidth.

INTRACHIP INTERCONNECT
The intrachip interconnect is responsible for general com-
munication among processing elements and cache coher-
ence (if present). There are many styles of interconnects for
intracore communications, such as bus, crossbar, ring, and
network-on-chip (NoC). Each type has advantages and disad-
vantages in terms of simplicity and performance. For exam-
ple, the bus is the simplest to design but quickly becomes
bandwidth and latency limited when trying to scale up to a
large number of processing elements. The NoC, on the other
hand, scales very well with the number of processing ele-
ments but is more challenging to design.

The interconnect also provides cache coherence, a very
important feature because it governs the type of programming
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[TABLE 2] SUMMARY OF PROS AND CONS OF MEMORY SYSTEM DESIGN DECISIONS.

ON-DIE MEMORY  PRO

CON

CACHES TRANSPARENTLY PROVIDE APPEARANCE OF LOW LATENCY ACCESSTO ~ NO REAL-TIME PERFORMANCE GUARANTEE, NEED TO USE
MAIN MEMORY, CAN BE CONFIGURED EASILY INTO MULTIPLE LEVELS DIE AREA TO STORE TAGS

LOCAL STORE CAN STORE MORE DATA PER DIE AREA AS CACHES, PROVIDE REAL-TIME ~ MUST BE SOFTWARE CONTROLLED
GUARANTEE

COHERENCE PRO CON

YES PROVIDES A SHARED MEMORY MULTIPROCESSOR, SUPPORTS ALL PRO-  HARD TO IMPLEMENT

GRAMMING MODELS
NO EASY TO IMPLEMENT

INTERCONNECT PRO

BUS EASY TO IMPLEMENT, ALL PROCESSORS SEE UNIFORM LATENCIES TO

EACH OTHER AND ATTACHED MEMORIES

RING HIGHER BISECTION BANDWIDTH THAN BUS, SUPPORTS LARGE NUMBER

OF PROCESSORS

NoC HIGH BISECTION BANDWIDTH, SUPPORTS LARGE NUMBER OF CORES,
NONUNIFORM LATENCIES ARE LOWER VARIANCE THAN RING
HIGHEST BISECTION BANDWIDTH, CAN SUPPORT LARGE NUMBER OF

CROSSBAR
CORES, UNIFORM ACCESS LATENCIES

RESTRICTS PROGRAMMING MODELS SUPPORTED

CON

LOW BISECTION BANDWIDTH, SUPPORTS SMALL
NUMBER OF CORES

NONUNIFORM ACCESS LATENCIES, HIGH VARIANCE IN
ACCESS LATENCIES, REQUIRES ROUTING LOGIC
REQUIRES SOPHISTICATED ROUTING AND ARBITRATION
LOGIC

REQUIRES SOPHISTICATED ARBITRATION LOGIC, NEEDS
LARGE AMOUNT OF DIE AREA

models the architecture supports. Cache coherence maintains
a single image of memory automatically visible to all proces-
sors in the system and is essential for programming models
that implicitly depend on shared memory. It is very common
in general-purpose processors like the ARM Cortex A9 [6]. Two
ways coherence can be implemented are broadcast based or
directory based.

Broadcast-based coherence is simple; it achieves this by
using the interconnect to only allow one processor at a time
to perform an operation that is visible to all other proces-
sors. This is illustrated in Figure 3(a). In the broadcast pro-
tocol when a write (circled W) occurs, a single invalidate
request (dashed lines) is sent to all the other processors to
gain the proper permissions to perform the write. The
processor holding the data returns the value to P1 (solid
line) and the write is performed (square W). Because the
broadcast protocol (usually on a bus) occupies the entire
interconnect, the read (dashed line circled R) by P3 must be
delayed until the write is completed. At that time the read
(circled R) requests in a single request seen by all other pro-
cessors (dashed line), and the data is returned by the current
owner, completing the read (square R). Overall, for small
numbers of processors the broadcast based approach is rea-
sonable. Usually on the order of eight cores can be supported
as is the case for the Intel Core i7 [2].

Directory-based coherence, on the other hand, scales to
larger numbers of processors than broadcast-based coher-
ence because it enables multiple coherence actions to occur
concurrently. Directory coherence works by having nodes
query a distributed directory. The directory contains infor-
mation about which caches contain each memory address.
Each address is assigned a home node where its portion of
the directory is stored. When an access is required, the pro-
cessor will query the home node of that address to obtain a
list of processors currently holding that cache block. The
requestor, in turn, gains access rights from all the relevant
processors. Figure 3(b) shows how a directory scheme can
perform multiple operations in parallel. In the directory pro-

tocol, the write performed by P1 first queries the home node
(P2) of the address to determine the current owner/sharers
(P3) of that cache block. P2 responds with the list and P1
then sends out an invalidate request individually to each
owner/sharer. Each node will respond with an acknowledg-
ment. Once P1 has received all the acknowledgments it can
perform the write. A similar process is done for the read
from P3 to the home node (P4) and owner (P4). In this case,
since the network is not entirely occupied by a broadcast,
both the read and write can be performed in parallel.
Directory coherence is suitable for weak consistency models
and large systems (tens to hundreds of cores), such as the
Tilera TILE64 [13].

It is not uncommon for multicore designs to omit cache
coherence to reduce design and verification complexity. A
number of current multicore processors lack cache coherence,
examples include the TI TMS320DM6467 [14] and the IBM
Cell [9]. The lack of cache coherence means that the software
must enforce the desired memory state seen by all the cores
during execution. This limits the programming models to
variants of message passing. For application domains that only
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[FIG3] lllustration of (a) broadcast and (b) directory coherence.
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o 2 2 3 ES 5 5 = In the remainder of this section we will discuss se;/zra_
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[FIG4] Tilera TILE64 block diagram.

TILERA TILE64-DIGITAL SIGNAL PROCESSING
The Tilera TILE64 [13] is a DSP-focused processor that takes
the concept of a multicore to a logical extreme. It uses up to
64 simple, three-way VLIW cores connected by an NoC inter-
connect that is fully coherent. Because the individual cores
are very small and low powered, the chip needs to needs
massive parallelism in the application to achieve reasonable
performance. Many DSP programs can take advantage of the
many threads this processor exposes to the programmer. A
block diagram of the architecture is provided in Figure 4.
The fully coherent interconnect is not typical for a processor
targeted towards DSP applications. However, it allows the processor
to run more general-purpose shared memory programs. The inter-
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[FIG5] Element CXI ECA-64 block diagram.

connect is a large NoC, and because of the high number of cores it
has a directory-based coherence policy to achieve scalable perfor-
mance. Because of the extra general-purpose additions, such as a
coherent interconnect and wider individual processing elements,
its power consumption is, at 18 W, higher than most in its class.

ELEMENT CXI ECA-64-DIGITAL SIGNAL PROCESSING

The Element CXI ECA-64 [3] is a very low-power multicore tar-
geted at DSP. It takes a very different design philosophy from any
other multicore presented in this section by using a handful of
control cores to manage a “sea” of ALUs. This is shown in the
block diagram in Figure 5. This core is focused on data driven
applications and very low power. The programming model is simi-
lar to programming a field-programmable gate array (FPGA).

The focus on low power is helped by a heterogeneous
design. The processor itself is made up of four clusters of 16
processing elements. These clusters each include one RISC
style processing core and 15 ALUs that are each specialized for
different purposes. Also, each ALU is data driven, only
performing operations when data is present at the input help-
ing to keep power consumption low.

The memory subsystem follows design decisions made for
low power. Each cluster shares 32 kB of local memory that is
managed by software. The interconnect is hierarchial. It tightly
couples four processing elements via a crossbar, and then four
of these tightly coupled groups are connected using a point-to-
point set of queues to form a cluster of 16 elements. The clus-
ters then are able to communicate by a bus to each other.
Although this is a low-power memory organization, the need
for software control can make programming a challenge.

SILICON HIVE HIVEFLEX CSP2X00
SERIES-DIGITAL SIGNAL PROCESSING
The HiveFlex CSP2x00 [29] series are soft cores offered by
Silicon Hive. They are very low power, operating at around one
quarter of a watt. A block diagram of the architecture is pro-
vided in Figure 6.

To achieve this low power, the series employs a heterogeneous
collection of cores to attain the desired performance target. It has
a control chip that is a general-purpose two-way VLIW design

Control Signal Bus

Five-Way
VLIW
Complex Complex
Arithmetic o Arithmetic
Core Core

Five-Way

Two-Way VLIW

VLIW
Control
Core

Local Store Memory

[FIG6] Silicon Hive HiveFlex CSP2x00 block diagram.
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with small standard caches used to run the main program. It then
off-loads data intensive work to so-called “complex cores.” The
“complex cores” are five-way VLIW cores with customized ALUs
for accelerating mathematical operations connected to a large
local store RAM. The “complex cores” do not support branching,
so they must be fed straight line code from the control core. The
removal of branching support simplifies the “complex cores” to
allow for savings in area and, more importantly, power.

In addition, the CSP2x00 has a very simple memory hierar-
chy. Coherence and consistency is controlled by software run-
ning on the control core. The bus interconnect of the CSP2x00
is primarily for transferring commands from the control core to
the complex cores, which then communicate amongst them-
selves through the local store. All these design characteristics
make for a very low-power yet high-performance chip. However,
creating efficient software is a challenge.

ARM CORTEX A9-GENERAL-PURPOSE MOBILE

The ARM Cortex A9 [6] is a general-purpose mobile embedded
soft core that can be custom tailored before manufacturing; a
block diagram is provided in Figure 7. The most common con-
figurations are very low power—1 W or less. The design is tar-
geted to general-purpose computing from smart phones to full
featured netbooks. This entails a design that handles control
dominated applications well. The individual processing cores on
the A9 are three-way out-of-order that offer high general-pur-
pose performance. The chip is targeted to run an OS and more
traditional desktop style applications.

The interconnect used for the memory system is a fully
coherent bus. The coherence is broadcast based since the
number of cores this design uses is small. The caches are fairly
large for a processor targeted at embedded applications. These
are required to support the high clock speed and aggressive
single thread design of the individual processing elements.
More data dominated applications will not execute particularly
efficient on this machine, because as noted, the chip is geared
to traditional desktop style applications.

TI OMAP 4430-GENERAL-PURPOSE

MOBILE SoC

The TI OMAP 4430 [12] is a general-purpose system-on-chip
(SoC) targeted to future smart phones and mobile-Internet-de-
vices (MIDs). A block diagram is provided in Figure 8. The
design is also very low power, reported to be about 1 W, with
significant processing capabilities and a large number of periph-
erals. It uses two ARM Cortex A9 processors for general-purpose
applications and a C64x DSP to be used for emerging data-dom-
inated media applications. To process most media and graphics,
it has three fixed function ASICs to accelerate performance at
very low power: a GPU, image processor, and audio/visual codec
processor. It also has many peripherals and other accelerators
like encryption on chip. This chip is predominantly a collection
of ASICs that are controlled by the general-purpose processors.
This is done to save as much power as possible. In cases where
the ASICs can not be employed, like running a new media

One
to Four
Cores

[FIG7] ARM Cortex-A9 block diagram.

codec, it has ample processing capabilities from the three gen-
eral-purpose cores but uses more power.

The interconnect used for the memory system is a fully
coherent bus between the ARM cores for general-purpose
shared memory programming. The bus between the accelera-
tors and C64x is noncoherent, requiring the ARM cores to
explicitly manage data movement to and from the accelerators
and DSP. The memory controller is shared, making the point
of coherence for the entire system at the main memory level.

NVIDIA G200-GRAPHICS/

HIGH-PERFORMANCE COMPUTE

The NVIDIA G200 [21] is a high-performance architecture spe-
cifically aimed at data dominated applications, particularly ras-
ter graphics. However, it is also able to provide more general
programmability to support nongraphics related, data depen-
dant applications.

The architecture itself contains 240 simple one-way in-order
cores. Each core is grouped together with 24 other cores in a
cluster. Every group of eight cores share a 16 kB local store
memory. The 24 cores are controlled in a SIMD manner: each
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[FIG8] TI OMAP 4430 block diagram.
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core executes the same instruction from different “threads.”
Unlike an SIMD processor, each core is capable of branching, but
if this happens, all the other cores must execute both paths of the
branch and only keep the path they would have followed. The
G200 cores can also access memory in a non-SIMD like fashion,
e.g., if core one accesses address x, core two can access address y
rather than only x + 1 as would be the case in a traditional SIMD
machine. Though accessing memory in this fashion imparts a
performance penalty as the memory controller cannot, in gener-
al, coalesce memory accesses. This makes the G200 more general
than a traditional SIMD machine and is closer to a multiple
instruction multiple data (MIMD) machine. But because the
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[FIG10] Intel Core i7 block diagram.
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Op Units and Mem
Controllers

architecture incurs penalties when the
instruction streams and memory accesses
for processors in a group diverge, it sits in
between traditional MIMD machines from
manufacturers like Intel and its previous
fixed function GPU predecessors.

The design of the memory system is
also tuned to data dominated applications.
The memory system is noncoherent and
uses small local stores instead of a stan-
dard cache style architecture (caches do
exist, but they are used as texture caches
for raster graphics and not general-pur-
pose computing). The G200 has relatively
little on die memory, instead favoring
compute resources. It is able to accommo-
date this by using very low latency high
speed RAM, since power is not a factor in
this design. Even though the memories
are noncoherent, the G200 does provide
some facility for more general parallel
programs by providing “atomic operation”
units as seen in Figure 9. These are used
for controlling access to shared data struc-
tures that live in the GPU’s main memory.

As noted, this architecture is well suited
for applications that are highly data domi-
nated, for example, medical imaging, and financial data process-
ing. It however, is not very well suited for control-dominated
applications because branches and random memory accesses incur
stiff performance penalties. The G200 is a unique architecture that
is almost a general-purpose MIMD but to maximize compute den-
sity was designed with certain restrictions and specializations to
accomplish its primary task, which is graphics processing.

INTEL CORE I7-GENERAL PURPOSE

The Intel Core i7 [2] is a high-performance general-purpose pro-
cessor in all respects. It attempts to do everything well. This
comes at the cost of a high (140 W) maximum power dissipation.

It is implemented with up to eight four-issue out-of-order,
two-way symmetric multithreading (SMT) cores, as seen in
Figure 10. These cores contain many complex enhancements to
extract as much performance out of a single thread as possible.
Each core also contains a 128-b SIMD unit to take advantage of
some data parallelism. In keeping with most Intel processors, it
supports the CISC x86 ISA. This design allows it to do many
things well, but lower power more specialized designs can com-
pete favorably in particular application domains.

The memory system is typical of that found in a general-
purpose multicore machine with just a few cores. It uses a
fully coherent memory system and has large standard caches.
The coherence is broadcast based, which is sufficient because
of the limited number of cores. These characteristics come
together to create a chip that is good at a wide variety of appli-
cations provided power is not a constraint.
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CONCLUSION

With the emergence of commercial multicore architectures in
an array of application domains, it is important to understand
the major design characteristics common among all multi-
cores. In this article, we defined five major attributes common
among multicore architectures and discussed the tradeoffs for
each attribute in the context of actual commercial products.
These areas were application domain, power/performance, pro-
cessing elements, memory, and accelerators/integrated periph-
erals. We then covered in greater detail several commercial
examples of multicore chips in a variety of application areas.
We illustrated how attributes such as DSP, general-purpose
mobile, and high-performance general purpose directed these
example architectures to very unique designs.

With transistor budgets still increasing every few years and
the desire for more performance still apparent, multicore archi-
tectures will continue to be produced. As more applications are
developed that can take advantage of multicore, the designs will
continue to evolve to offer the desired balance of programmabil-
ity and specialization.
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